Copied to
clipboard

G = C922S3order 486 = 2·35

2nd semidirect product of C92 and S3 acting faithfully

non-abelian, supersoluble, monomial

Aliases: C922S3, He3⋊C3⋊S3, C922C33C2, C3.6(He3⋊S3), C32.1(He3⋊C2), (C3×C9).1(C3⋊S3), SmallGroup(486,61)

Series: Derived Chief Lower central Upper central

C1C3×C9C922C3 — C922S3
C1C3C32C3×C9He3⋊C3C922C3 — C922S3
C922C3 — C922S3
C1C3

Generators and relations for C922S3
 G = < a,b,c,d | a9=b9=c3=d2=1, ab=ba, cac-1=a7b-1, dad=a-1b-1, cbc-1=a3b, bd=db, dcd=c-1 >

27C2
3C3
27C3
27C3
27C3
9S3
27S3
27S3
27S3
27C6
3C9
3C9
6C9
9C32
9C32
9C32
3D9
9C3×S3
27C3×S3
27C18
27C3×S3
27C3×S3
3He3
3C3×C9
3He3
3He3
3He3⋊C2
3He3⋊C2
3He3⋊C2
3C3×D9
9S3×C9
3He3.2C6
3He3.2C6
3He3.2C6
3C9×D9

Permutation representations of C922S3
On 27 points - transitive group 27T179
Generators in S27
(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(1 9 2 5 8 6 4 3 7)(10 17 15 13 11 18 16 14 12)(19 27 26 25 24 23 22 21 20)
(1 27 15)(2 25 17)(3 20 13)(4 21 12)(5 24 18)(6 22 11)(7 19 14)(8 23 10)(9 26 16)
(1 27)(2 25)(3 20)(4 21)(5 24)(6 22)(7 19)(8 23)(9 26)

G:=sub<Sym(27)| (10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,9,2,5,8,6,4,3,7)(10,17,15,13,11,18,16,14,12)(19,27,26,25,24,23,22,21,20), (1,27,15)(2,25,17)(3,20,13)(4,21,12)(5,24,18)(6,22,11)(7,19,14)(8,23,10)(9,26,16), (1,27)(2,25)(3,20)(4,21)(5,24)(6,22)(7,19)(8,23)(9,26)>;

G:=Group( (10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,9,2,5,8,6,4,3,7)(10,17,15,13,11,18,16,14,12)(19,27,26,25,24,23,22,21,20), (1,27,15)(2,25,17)(3,20,13)(4,21,12)(5,24,18)(6,22,11)(7,19,14)(8,23,10)(9,26,16), (1,27)(2,25)(3,20)(4,21)(5,24)(6,22)(7,19)(8,23)(9,26) );

G=PermutationGroup([[(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(1,9,2,5,8,6,4,3,7),(10,17,15,13,11,18,16,14,12),(19,27,26,25,24,23,22,21,20)], [(1,27,15),(2,25,17),(3,20,13),(4,21,12),(5,24,18),(6,22,11),(7,19,14),(8,23,10),(9,26,16)], [(1,27),(2,25),(3,20),(4,21),(5,24),(6,22),(7,19),(8,23),(9,26)]])

G:=TransitiveGroup(27,179);

31 conjugacy classes

class 1  2 3A3B3C3D3E3F6A6B9A···9F9G···9O18A···18F
order12333333669···99···918···18
size12711654545427273···36···627···27

31 irreducible representations

dim11223366
type+++++
imageC1C2S3S3He3⋊C2C922S3He3⋊S3C922S3
kernelC922S3C922C3C92He3⋊C3C32C1C3C1
# reps111341236

Matrix representation of C922S3 in GL3(𝔽19) generated by

600
010
0016
,
900
060
006
,
001
100
010
,
100
001
010
G:=sub<GL(3,GF(19))| [6,0,0,0,1,0,0,0,16],[9,0,0,0,6,0,0,0,6],[0,1,0,0,0,1,1,0,0],[1,0,0,0,0,1,0,1,0] >;

C922S3 in GAP, Magma, Sage, TeX

C_9^2\rtimes_2S_3
% in TeX

G:=Group("C9^2:2S3");
// GroupNames label

G:=SmallGroup(486,61);
// by ID

G=gap.SmallGroup(486,61);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,49,218,224,873,1167,453,8104,3250,1906]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^9=c^3=d^2=1,a*b=b*a,c*a*c^-1=a^7*b^-1,d*a*d=a^-1*b^-1,c*b*c^-1=a^3*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C922S3 in TeX

׿
×
𝔽